Low Carbon Mobility Blueprint

Bandar Rendah Karbon

22nd September 2020

CURRENT POPULATION ESTIMATES, MALAYSIA, 2020

Consideration for Low Carbon Mobility Blueprint

Mobility in Malaysia consumes 37% of final energy consumption, contributes to 29% of greenhouse gas emissions and costs RM 89.9 billion in annual fuel consumption expenditure

Malaysia car ownership level is the third highest in the world at 93% per household. Malaysia registered 28.2 million vehicles over 32.6 million population at the end-2019.

20% Public
Transport & 2% Rail
Freight Modal
Share

LCMB Approach

Avoid

Improve

Finding on energy efficiency and cost

Transport Mode	Energy Type	Passenger Kilometer/MJ
Taxi	Petrol	0.49
Car	Petrol	0.51
Car – (EEV)	Petrol	0.68
Car – HEVs	Petrol	0.87
Taxi	30% Petrol, 70% CNG	1.04
Motorcycle	Petrol	1.73
Bus	Diesel (B7)	1.76
Car - EVs	Electricity	2.20
Bus	CNG	2.72
Rail	Electricity	3.19
Bus (full load)1	Diesel (B7)	3.82
Bus (full load)1	CNG	5.91
Bus	Electricity	4.26
Motorcycle	Electricity	4.26
Rail (full load)2	Electricity	8.93
Bus (full load)1	Electricity	11.10

efficie lower mission Mo

Energy Efficiency & Emission Labeling

Vehicle Fitness Inspection

GHG Reduction

Vehicle Energy

Efficiency

Electric Car Adoption

LCMB

GHG Reduction via Electric Mobility

Electric Motorcycle Adoption

Electric Bus Adoption

GHG Reduction via

Alternative Fuel

Biogas

Agricultural waste, municipal waste, sewarage and organic waste

Biofuel

Biomass (e.g. Crude Palm Oil)

Bio-CNG

Residue and waste material

Hydrogen

Renewable Energy (Hydropower, Solar and Biogas)

LCMB

Shifting Freight (Road-to-Rail)

GHG Reduction via Public Transport Modal Share

Public Transport

Land-use Development

Transit-Oriented Development & Low Carbon City Framework

The TOD concept can help to reshape the quality and form of urban growth through improving accessibility, mobility, pedestrian friendliness, and increasing sustainability

FLM connectivity

First-Mile Last-Mile

A dense network of walking and cycling routes improve access to goods, services and public transport.

PUBLIC TRANSPORT

Frequent, fast, and reliable high capacity rapid transit reduces dependence on private vehicles.

TRAFFIC FLOW

Specific bus route, congestion charges, & reduction in the overall supply of parking create incentives for the use of public transport

Shifting Freight Mode from Road to Rail

Cargo freight is transported 98% by road and only 2% by rail. By LCMB, road-to-rail freight mode is targeted to increase to 5%(2030).

LCMB Potential Reduction 26.9
million tonnes
of CO₂
emissions
(26.9%)

LCMB Focus Area 2025 2030 2015 2020 Vehicle Energy Efficiency Electric Mobility Alternative Fuel **LCMB** Adoption **ROADMAP** LCMB Public Transport Modal Share Green Tech UNIDO

Thank You

Huzaimi Nor Omar

huzaimi@greentechmalaysia.my

No. 2, Jalan 9/10, Persiaran Usahawan, Seksyen 9, 43650 Bandar Baru Bangi, Selangor

Tel: 03 8921 0800

Fax: 03 8921 0801 / 0802

Emel: info@greentechmalaysia.my

- Greentech Malaysia
- GreenTech.My
- GreenTech Malaysia
- GreenTech Malaysia

LCMB Analysis

- ☐ The most carbon intensive mode is private car, ranging from 82 to 148 gCO₂eq/passenger-km.
- □ Public transport such as rail and buses produce substantially lower values from the range of 10 to 67 gCO₂eq/passenger-km depending on load.
- Our number of buses per 100,000 population in GKL is only 19, whereas the World Bank Urban baseline is 50. Thus, for a population of 8 million there should be at least 4,000 buses (instead of now 1,567 buses).
- ☐ Rail freight on average use only 15% as much energy as a freight truck per tonne-km.
- ☐ if the driving speed improves from 10 km/h to 60 km/h, fuel efficiency will be from 0.22 liters/km to 0.06 liters/km, and CO2 emissions will be reduced from 600 gCO₂/km to 100 gCO₂/km. Situation will be worse on stand still/idling and stop-go condition.