SUSTAINABLE ENERGY MANAGEMENT SYSTEM: A NECESSITY FOR EVERY BUILDING TO REDUCE CARBON EMISSION AND ENERGY COSTS

By ZAINI ABDUL WAHAB

UNIDO Certified Energy Management System Expert

TOTAL FINAL ENERGY CONSUMPTION BY SECTOR IN MALAYSIA

Notes: Buildings sector includes residential and services. Other includes agriculture and non-energy use. Other renewables includes solar PV and wind.

Source: WEO2015_SouthEastAsia_IEA-ERIA

ENERGY RELATED CO2 EMISSION BY SECTOR

^{*}Includes agriculture and non-energy use. **Includes transformation industries from other energy sector.

THE HOLISTIC & SUSTAINABLE APPROACH TO REDUCE ENERGY (BUSINESS/OPERATIONAL) COSTS?

WITHOUT AN EFFECTIVE MANAGEMENT SYSTEM

 Inefficiencies in the building operations can go unnoticed

 Lost opportunities to improve energy use & reduce carbon emissions- may not be acted upon

 Unnecessary energy expenditureerodes profits & performance

ENERGY SAVING POTENTIALS AT BUILDINGS

Source: Retroficiency

Buildings' energy savings potential can range from 3-41%

Source: www.energymanagertoday.com

ENERGY CONSERVATION PROGRAM IMPLEMENTATION IN MALAYSIA

Private Commercial Shopping Complex

Areas of Implementation:

- 1) Transformers
- 2) Cooling System Chillers, Cooling Towers, AHUs, CHW & CDW Pumps
- 3) Lighting System Internal, External & Parking
- 4) Demand Controls

Total Actual Saving Achieved
= RM 1,495,000/year Source: ESCO

Private Warehouse

Application Areas:

- Fluorescent Lamps
- High bay Lighting HID

Total annual Saving

- = 42.2%
- = 3,283,200 kWh,
- = RM 920,000

TREASURY BUILDING, MINISTRY OF FINANCE OF MALAYSIA 17% reduction of electricity bill in 2011 based on 2010 baseline consumption – SEDA Malaysia

ENERGY EFFICIENT TECHNOLOGIES : DESIGNING & SUSTAINING THE PERFORMANCE OF ENERGY EFFICIENT BUILDINGS

58 68 68 W

Control systems

Photovoltaics

MANAGERIAL

PLAN:

- · Policy/goals/targets
- Resources

DO:

- Training
- Communication
- Control equipment systems & processes

CHECK:

- Corrective/
 preventive action
- · Internal audits

ACT:

Management review

TO SUSTAIN & IMPROVE PERFORMANCE

TECHNICAL

PLAN:

- Energy data management
- Assessments

DO:

- Energy purchasing
- Design
- Projects
- Verification

CHECK:

- Monitoring
- Measurement

ACT:

 System performance

Source: Carbon Trust, UK

ENERGY EFFICIENT BUILDINGS IN MALAYSIA LEAD BY EXAMPLE BY THE GOVERNMENT

2007 2004 2010

Net BEI = 30 (86% reduce)

Malaysia 2009 30sen

65 TonCO2/year

GBI: Certified (2009)

ASEAN EA: 2009/2010/2011

Net BEI = 114 (59% reduce)

1,490 TonCO2/year

GBI : Silver (2011)

ASEAN Energy Award: 2006

Net BEI = 63 (70% reduce)

637 TonCO2/year (**To verify)

GBI & GreenMark: Platinum (2011)

ASEAN EA: 2012

ENERGY MANAGEMENT, ENERGY MANAGEMENT SYSTEM & STANDARD

ENERGY MANAGEMENT

All activities to ensure efficient use of energy in the organization

STANDARD
Systematic approach
for the management
of energy use

SUSTAINABLE ENERGY MANAGEMENT SYSTEM

- ☐ The process of managing the energy use in the organization
 - √ to ensure that energy is used efficiently
 - √ adopting a system
 - ✓ to achieve desired results & for continual improvement
- ☐ Involved the **people & equipment** in the daily operation

KEY REFERENCES IN ENERGY MANAGEMENT SYSTEM DEVELOPMENT AND IMPLEMENTATION

NO.	STANDARD AND SCOPES		
1	ISO50001:2018 Energy Management Systems-Requirements with guidance for use		
2	ISO 50002:2014 Energy Audits-Requirements with guidance for use		
3	ISO50004:2014 Energy Management Systems-Guidance for the implementation, maintenance & improvement of an energy management system		
4	ISO50006:2015 Energy Management Systems — Measuring Energy Performance using energy baseline (EnB) & Energy Performance Indicator(EnPI)		
5	ISO50015:2015 Energy Management Systems — Measurement & verification of energy performance of organisations		
6	ISO50047: Energy savings-Determination of energy savings in organizations		
7	MS1525:2014 Energy efficiency and the use of renewable energy guidelines for non-residential buildings		

THE ADOPTION & IMPACTS OF ENERGY MANAGEMENT SYSTEM IS GROWING GLOBALLY

ISO50001 certification globally : 459(2011) to 11,985(2015) 42 ISO 50001 case studies(France, Germany, UK & other countries) - average annual energy savings of 26%

75 ISO 50001 case studies - financial savings averaging around USD 1.2 million per year

(Waide Strategic Efficiency, 2016; CEM, 2017b)

Sustainable Energy Management System Framework

EFFECTIVE ENERGY MANAGEMENT SYSTEM IMPLEMENTATION: WHO ARE INVOLVED?

Source: Global Superior Energy Performance Partnership,2013

GLOBAL SUCCESS STORIES AT BUILDINGS FROM ENERGY MANAGEMENT SYSTEM IMPLEMENTATION ADOPTION AND PRACTICES

ISO 50001 Energy Management Systems Implementation Case Study London South Bank University

10%
reduction in energy use

TNT CHILE

Has reduced systematically the consumption, achieving 15% improvements in last 10 years

	Case Study Snapshot		
	Industry	Freight Transportation	
í	Location	Chile	
	Energy Management System	ISO 50001	
	Product/Service	Express Cargo	
	Energy Performance Improvement (%)	7%	
	Annual energy cost savings	USD 262,790	
i		USD 21,507	

USD 333,209

17 Months

includes cost to implement ISO 50001

raining programs)and the cost of Improve improvements and new engines).

Conclusion

Taking a positive proactive approach, incorpo future energy and environmental managemer university's sustainability. Basic energy manage implemented without an energy manager or ϵ ensuring clear auditable records and the consprocesses. Once a system is in place maintain being required if consumption or business ch

"We believe that our decisive actions today can indeed lead to a better tomorrow."

-Michael Crochon, Executive VP Strategy & Technology

Figure 1 - Schneider Electric's Clovis, CA Facility — an ISO50001 and SEP Platinum certified facility

Business Benefits Achieved

Schneider Electric has realized many benefits from implementation of ISO50001 including:

	Case Study Snapshot		
	Industry	Energy and Energy Management Products and Services	
	Location	North America	
	Energy Management System	ISO 50001 & SEP	
	Product/Service	Electrical components, energy controls, and energy management tools and services	

	and services
Energy Performance Improvement (%)	11%
Total Certified sites in North America	20
Total SEP Certified Sites	Platinum - 6 Gold - 4 Silver - 6
Total energy savings	25,600 MWh

THE ADOPTION OF IoT APPLICATIONS EFFECTIVE ENERGY MANAGEMENT SYSTEM TECHNOLOGIES FOR ENERGY PERFORMANCE RECORDS & MONITORING

To Determine Current Energy Performance - often require the technical study

Air Conditioning

Overall System Sizing

Fan Volume Control

Room Air Distribution

Cooling & Air Conditioning Systems: Operation & Maintenance

- ☐ Reducing the heat gains
 - Periodic inspections of air conditioning systems
 - What are the control set point temperatures?
 - Where are the sensors located?
 - What is the control strategy?
 - Are there manual overrides?
 - Are windows open?
 - Is the heating on at the same time?
 - How are the occupants dressed?
- ☐ The operation of centralized chiller system/air conditioning unit
 - Is it running when not required?
 - Is it running excessively?
 - Is it constantly cycling on and off?
 - Is there conflict between the cooling requirement & cooling system?
- Maintenance reviews
 - Blocked pipes/ducts
 - Insulation

Motors & Driven Systems : Variable Speed Drives(VSDs) Applications

- □Variable speed drives for pumps & fans
 - ✓ Control the speed of AC motors
 - ✓ Control the motor shaft load of variable loads.
 - ✓ allow variable flow control without the energy losses associated with control valves & dampers
- □Correctly designed VSD systems can reduce energy consumption between 20% and 70% (ABB 2009)
- □ Variable torque loads -power consumed varies with the cube of the motor speed
 - any speed reduction on the part of the motor will result in large energy savings
 - A 20% reduction in motor speed can result in a 50% power saving
- **□**Soft start of AC motors

Ventilation Systems

☐Things to look for

✓ Cleanliness to deliver the same quantity of air?

✓ Any potential for heat recovery?

✓ Can the system be used for night purging or free cooling?

✓ Is there any natural ventilation used?

 If so, does mechanical ventilation operate simultaneously?

Lighting Systems

- Not all areas of a building are occupied all the time
- Automatic controls & sensors to match lighting needs
- Reducing the lighting levels where there is over lamping (follow MS1515 requirements)
- Day lighting potentials
- Implementing more energy-efficient lamps -T5,LED technologies
- Ballasts-Low loss types
- Luminaries

Effective Control Systems

Dampen variation in energy consumption & allow a process to operate closer to its designed control limits

Temperature control limits for air conditioning systems

Matching the most efficient machine with actual demand

 Using preventive maintenance & condition monitoring to predict and prevent equipment failures

- Reducing excess flows
- Reducing blow down
- Using variable speed drives
- Monitoring the performance of key plant items

Control Systems - The Use Of Sensors

□Common types

- Temperature
- Humidity
- Carbon dioxide
- Movement
- Day light

☐The location

 to provide a representative the closet indication of reading value for the space/area

☐Periodically checked &calibrated

to ensure reliable data

CASE STUDY: CHILLER RETROFITTING PROJECT IN MALAYSIA BY E-EYE SDN BHD(MAESCO MEMBER)

CASE STUDY: CHILLER RETROFITTING PROJECT IN MALAYSIA BY E-EYE SDN BHD(MAESCO MEMBER)

KEY EVALUATION CRITERIA – WHEN LARGE SCALE INVESTMENT NEEDED

FUNDING OPTIONS TO IMPLEMENT ENERGY SAVING PROJECTS?

EXTERNAL

PARTIES BY THIRD

INTERNAL

LOAN

PUBLIC PRIVATE PARTNERSHIP

CONVENTIONAL PROCUREMENT

GRANTS

LEASE

ENERGY PERFORMANCE CONTRACTING Shared Saving Model

ENERGY PERFORMANCE
CONTRACTING
Performance Guarantee
Model

WHAT'S NEXT?

To go ahead & secure /maintain commitment from the top management

Carry out the energy review & planning steps

Carry out the implementation & operation of Energy Management Program

To continue supports from the top management with performance improvements & energy cost savings achieved

ENERGY

Zaini Abdul Wahab

ABOUT **SERVICES BLOG & RESOURCES** CONTACT

zaini4ee.com Facebook page:

info@zaini4ee.com 0192152700 Zaini4ee

-End of Session-

MAESCO

(Pertubuhan Syarikat Syarikat Perkhidmatan Tenaga Malaysia)
Malaysia Association of Energy Service Companies

9, Jalan SS7/10, 47301, Kelana Jaya. Petaling Jaya, Selangor Darul Ehsan

Tel: 03-78730784/5/6 Fax: 03-78730769

Email: training@maesco.org.my Website: www.maesco.org.my